zhenbo

ISSN 0253-3782 CN 11-2021/P

液化场地强震记录的频谱特征分析

徐国林 陈龙伟

引用本文: 徐国林, 陈龙伟. 2019. 液化场地强震记录的频谱特征分析. 地震学报[J]. doi: 10.11939/jass.20190112 shu
Citation:  Xu Guolin, Chen Longwei. 2019. Characteristic analysis of ground-acceleration recorded at liquefied sites. Acta Seismologica Sinica. doi: 10.11939/jass.20190112 shu

液化场地强震记录的频谱特征分析

    通讯作者: 徐国林, guolinxu@163.com
摘要: 为研究液化场地上建筑物承受地震作用的特性,本文采用11组液化场地实测记录,对液化场地的地震动特征进行了剖析。结果显示,场地液化后,地表加速度幅值减小,长周期成分显著增多,记录中出现明显的“尖刺”。对比国内外抗震规范设计反应谱与液化场地实测加速度反应谱,分析得出在短周期T<0.3 s段,规范设计反应谱与实测记录反应谱基本一致;在中长周期0.3 s<T<1.5 s段,规范反应谱值明显低于实测记录反应谱;在长周期T>1.5 s段,规范设计谱较实测记录反应谱值比略低。基于5种数值方法模拟的液化场地地震动结果显示,周期为T<1.0 s时;数值计算的反应谱值基本上高于液化场地实测反应谱值,或与之吻合;而周期为T>1.0 s时,数值计算的反应谱值则均低于液化场地实测反应谱值。

English

    1. 董林,王兰民,夏坤,袁晓铭. 2015. 含细粒砂性土标贯液化判别方法改进研究[J]. 岩土工程学报,37(12):2320–2325. doi: 10.11779/CJGE201512024

    2. Dong L,Wang L M,Xia K,Yuan X M. 2015. Improvement of SPT-based liquefaction discrimination methods for fines-containing sandy soils[J]. Chinese Journal of Geotechnical Engineering,37(12):2320–2325 (in Chinese).

    3. 李兆焱,袁晓铭. 2016. 2016年台湾高雄地震场地效应及砂土液化破坏概述[J]. 地震工程与工程振动,36(3):1–7.

    4. Li Z Y,Yuan X M. 2016. Seismic damage summarization of site effect and soil liquefaction in 2016 Kaohsiung earthquake[J]. Earthquake Engineering and Engineering Vibration,36(3):1–7 (in Chinese).

    5. 刘恢先. 1989. 唐山大地震震害[M]. 北京: 地震出版社: 301-338.

    6. Liu H X. 1989. Earthquake Damage of the Tangshan Earthquake[M]. Beijing: Seismic Press: 301-338(in Chinese).

    7. 孙锐,袁晓铭. 2004. 液化土层地震动特征分析[J]. 岩土工程学报,26(5):684–690. doi: 10.3321/j.issn:1000-4548.2004.05.023

    8. Sun R,Yuan X M. 2004. Analysis on feature of surface ground motion for liquefied soil layer[J]. Chinese Journal of Geotechnical Engineering,26(5):684–690 (in Chinese).

    9. 孙锐,袁晓铭. 2010. 场地液化对反应谱影响评价[J]. 应用基础与工程科学学报,18(增刊1):173–180.

    10. Sun R,Yuan X M. 2010. Evaluation for effect of site liquefaction on response spectrum[J]. Journal of Basic Science and Engineering,18(S1):173–180 (in Chinese).

    11. 袁晓铭,曹振中. 2014. 基于土层常规参数的液化发生概率计算公式及其可靠性研究[J]. 土木工程学报,47(4):99–108.

    12. Yuan X M,Cao Z Z. 2014. Conventional soils parameters-based liquefaction probabilistic evaluation formula and its reliability analysis[J]. China Civil Engineering Journal,47(4):99–108 (in Chinese).

    13. 中华人民共和国国家质量监督检验检疫总局, 中国国家标准化管理委员会. 2016. GB 18306-2015中国地震动参数区划图[S]. 北京: 中国标准出版社.

    14. Hoobox General Administration of Quality Supervision, Inspection and Quarantine of the People's Republic of China, Standardization Administration of the People's Republic of China. 2016. GB 18306-2015 Seismic Ground Motion Parameters Zonation Map of China[S]. Beijing: China Standards Publishing House (in Chinese).

    15. Ashford S A, Boulanger R W, Donahue J L, Stewart J P. 2011. Geotechnical Quick Report on the Kanto plain Region During the March 11, 2011, off Pacific Coast of Tohoku Earthquake, Japan[R]. GEER Association Report No. GEER-025a.

    16. Building Seismic Safety Council. 2009. NEHRP Recommended Seismic Provisions[R]. Washington DC: Building Seismic Safety Council.

    17. European Committee for Standardization. 2004. EN 1998-1 Eurocode 8: Design of Structures for Earthquake Resistance-Part 1: General Rules, Seismic Actions and Rules for Buildings[S]. Brussells: CEN.

    18. Chen L W,Yuan X M,Sun R. 2011. Simplified modeling of ground motion on liquefied sites under seismic loading[J]. Adv Mater Res,243-249:2842–2851. doi: 10.4028/www.scientific.net/AMR.243-249.2842

    19. Cubrinovski M,Bradley B A,Wotherspoon L,Green R,Bray J,Wood C,Pender M,Allen J,Bradshaw A,Rix G,Taylor M,Robinson K,Henderson D,Giorgini S,Ma K,Winkley A,Zupan J,O'Rourke T,DePascale G,Wells D. 2011. Geotechnical aspects of the 22 February 2011 Christchurch earthquake[J]. Bull New Zealand Soc Earthq Eng,44(4):205–226.

    20. Holzer T L,Youd T L,Hanks T C. 1989. Dynamics of liquefaction during the 1987 Superstition Hills,California,earthquake[J]. Science,244(4900):56–59. doi: 10.1126/science.244.4900.56

    21. Idriss I M, Boulanger R W. 2008. Liquefaction During Earthquake[M]. Oakland: Earthquake Engineering Research Institute.

    22. Idriss I M,Boulanger R W. 2015. 2nd Ishihara lecture:SPT- and CPT-based relationships for the residual shear strength of liquefied soils[J]. Soil Dyn Earthq Eng,68:57–68. doi: 10.1016/j.soildyn.2014.09.010

    23. International Code Council. 2004. 2003 International Building Code[S]. USA: International Code Council, INC.

    24. Ishihara K,Yoshimine M. 1992. Evaluation of settlements in sand deposits following liquefaction during earthquakes[J]. Soils Found,32(1):173–188. doi: 10.3208/sandf1972.32.173

    25. New Zealand Standard. 2004. NZS 1170.5:2004 Structural Design Actions Part 5: Earthquake Actions - New Zealand[S]. New Zealand: New Zealand Standard.

    26. Seed H B, Idriss I M. 1970. A Simplified Procedure for Evaluating Soil Liquefaction Potential[R]. University of California at Berkeley, U. S. Earthquake Engineering Research Centre Report No. EERC 70-9.

    27. Youd T L. 1998. Screening Guide for Rapid Assessment of Liquefaction Hazard at Highway Bbridge Sites[R]. Multidisciplinary Center for Earthquake Engineering Research, Technical Report MCEER-98-0005.

    28. Youd T L,Holzer T L. 1994. Piezometer performance at wildlife liquefaction site,California[J]. J Geotech Eng,120(6):975–995. doi: 10.1061/(ASCE)0733-9410(1994)120:6(975)

    29. Youd T L,Idriss I M. 2001. Liquefaction resistance of soils:summary report from the 1996 NCEER and 1998 NCEER/NSF workshops on evaluation of liquefaction resistance of soils[J]. J Geotech Geoenviron Eng,127(4):297–313. doi: 10.1061/(ASCE)1090-0241(2001)127:4(297)

    30. Youd T L,Carter B L. 2005. Influence of soil softening and liquefaction on spectral acceleration[J]. J Geotech Geoenviron Eng,131(7):811–825. doi: 10.1061/(ASCE)1090-0241(2005)131:7(811)

    1. [1]

      刘帅潘超周志光 , 2018: 对人造地震动反应谱求解及拟合的几个相关问题探讨, 地震学报, 40, 519-530. doi: 10.11939/jass.20170226

    2. [2]

      赵凤新张郁山 , 2006: 拟合峰值速度与目标反应谱的人造地震动, 地震学报, 28, 429-437.

    3. [3]

      杨迪雄 赵 岩 , 2010: 近断层地震动破裂向前方向性与滑冲效应对隔震建筑结构抗震性能的影响, 地震学报, 32, 579-587.

    4. [4]

      韦 韬1,2)赵凤新1)张郁山1) , 2006: 近断层速度脉冲的地震动特性研究, 地震学报, 28, 629-637.

    5. [5]

      翟长海1)谢礼立1,2) , 2006: 考虑设计地震分组的强度折减系数的研究, 地震学报, 28, 284-294.

    6. [6]

      李春锋1)张 旸1)赵金宝2)唐 晖3) , 2006: 台湾集集大地震及其余震的长周期地震动特性, 地震学报, 28, 417-428.

    7. [7]

      冯继威李山有宋晋东 , 2018: 2016年10月30日意大利MW6.6地震破裂方向性效应对地震动参数的影响, 地震学报, 40, 227-240. doi: 10.11939/jass.20170132

    8. [8]

      王玉石李小军梅泽洪刘燕 , 2013: 几种仪器烈度算法在汶川地震与芦山地震中的可靠性比较, 地震学报, 35, 759-770. doi: 10.3969/j.issn.0253-3782.2013.05.014

    9. [9]

      朱永莉黎大虎龙承厚孙泽涛 , 2015: 不同仪器烈度算法在四川地区 历次地震中的比较应用, 地震学报, 37, 335-346. doi: 10.11939/jass.2015.02.013

    10. [10]

      邹立华1) 刘爱平1) 杨 宏1) 柴新建2) , 2007: 利用小波重构合成地震波方法及特性研究, 地震学报, 29, 635-642.

    11. [11]

      吴 迪1) 罗奇峰2) 熊 焱3) , 2009: 考虑凹凸体理论的经验格林函数方法, 地震学报, 31, 555-563.

    12. [12]

      江 辉 朱 晞 , 2008: 中、美主要抗震设计规范加速度谱的近断层地震动能量检验., 地震学报, 30, 508-517.

    13. [13]

      李新乐1)窦慧娟1) 朱晞2) 孙建刚1) , 2007: 缺乏近断层强震观测资料地区抗震设计规范反应谱研究, 地震学报, 29, 419-425.

    14. [14]

      覃锋1,2)徐龙军1) 谢礼立1) , 2011: 基于强震记录的核电厂抗震标准反应谱研究, 地震学报, 33, 103-113.

    15. [15]

      吕红山 赵凤新 , 2007: 适用于中国场地分类的地震动反应谱放大系数, 地震学报, 29, 67-76.

    16. [16]

      汪素云俞言祥吕红山 , 1998: 利用中国数字地震台网宽频带记录研究长周期地震动反应谱特性., 地震学报, 20, 481-488.

    17. [17]

      俞言祥汪素云吕红山 , 1997: 利用513中强地震仪记录图计算长周期地震动反应谱c , 地震学报, 19, 268-274.

    18. [18]

      章文波 谢礼立 郭明珠 , 2001: 利用强震记录分析场地的地震反应, 地震学报, 23, 604-614.

    19. [19]

      赵凤新胡聿贤 , 1996: 地震动反应谱与相位差谱的关系, 地震学报, 18, 287-291.

    20. [20]

      王培德1, 王鸣1, 周家玉1, 瞿江1, 倪晓希1, 倪江川1, 陈运泰1, 吴大铭 , 1991: 澜沧-耿马地震强余震的反应谱<, 地震学报, 13, 338-343.

  • 图 1  1995年神户地震中港岛的液化场地水平向30°(a)和60°(b)的加速度记录

    Figure 1.  Acceleration time histories with both 30°(a)and  60°(b) horizontal anglerecorded at Port Island in the 1995 Kobe earthquake

    图 2  1987迷信山地震液化场地WLA的两条加速度记录时程

    Figure 2.  Two acceleration time histories recorded at WLA in the 1987 Superstition Hills earthquake

    图 3  液化场地WLA加速度记录时间-频率谱

    Figure 3.  Time-frequency spectrum of WLA acceleration record

    图 4  液化场地地震动加速度反应谱(a)和位移反应谱(b)

    Figure 4.  Response spectra of acceleration (a) and displacement of collected liquefied sites (b)

    图 5  新西兰抗震设计规范NZS 1170.5(Technical Committee,2004)与基督城地震中液化场地加速度反应谱对比

    Figure 5.  Seismic design spectra by NZS 1170.5(Technical Committee,2004)comparing to response spectra of records at liquefied sites from 2011 Christchurch earthquake

    图 6  不同规范的基本地震设计谱与液化场地反应谱对比

    Figure 6.  Comparison of seismic design spectra by different seismic design codes to response spectra of records recorded at liquefied sites

    图 7  WLA试验场井下7.5 m处的加速度记录时程

    Figure 7.  The acceleration time histories of WLA site recorded at 7.5 m underground

    图 8  不同数值方法计算的地表加速度时程对比

    Figure 8.  Comparison of acceleration time histories calculated by different numerical methods

    图 9  不同数值方法计算的地表加速度反应谱对比

    Figure 9.  Comparison of ground acceleration response spectrum by different numerical methods with the recorded

    土层
    编号
    土类厚度/m干密度
    /(kN·m−3
    剪切波速
    /(m·s−1
    1粉土至含
    粘粉土
    315.7120
    2粉砂至砂
    质粉土
    417.3140
    3粉质黏土820.4190

    表 1  WLA场地土层参数(Youd和Carter,2005

    Table 1.  Soil parameters of WLA site(Youd and Carter,2005

    下载: 导出CSV
  • 加载中
图(9)表(1)
计量
  • PDF下载量:  18
  • 文章访问数:  198
  • HTML全文浏览量:  126
  • 引证文献数: 0
文章相关
  • 通讯作者:  徐国林, guolinxu@163.com
  • 收稿日期:  2019-05-30
  • 录用日期:  2019-07-09
  • 网络出版日期:  2019-09-01
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

/

返回文章
本系统由北京仁和汇智信息技术有限公司设计开发 技术支持: info@rhhz.net 百度统计