zhenbo

ISSN 0253-3782 CN 11-2021/P

应力增量触发断层岩体能量释放模拟与地震成因探讨—以龙门山断裂带为例

师皓宇 马念杰 石建军 李楠 马骥

引用本文: 师皓宇, 马念杰, 石建军, 李楠, 马骥. 2019. 应力增量触发断层岩体能量释放模拟与地震成因探讨—以龙门山断裂带为例. 地震学报, 41(4): 502-511. doi: 10.11939/jass.20180151 shu
Citation:  Shi Haoyu, Ma Nianjie, Shi Jianjun, Li Nan, Ma Ji. 2019. Simulation on energy release of fault rock mass triggered by stress increment and discussion on seismogenesis:Taking Longmenshan fault zone as an example. Acta Seismologica Sinica41(4): 502-511. doi: 10.11939/jass.20180151 shu

应力增量触发断层岩体能量释放模拟与地震成因探讨—以龙门山断裂带为例

    通讯作者: 李楠, linan78@ncist.edu.cn
摘要: 本文以龙门山断裂带为背景,基于岩体应变能基本理论,使用FLAC软件模拟地震能量源和能量释放形式,计算结果显示:在0.01 MPa水平应力增量作用下,龙门山断裂带及附近区域可释放的应变能约为3.24×1013 J;使得断层面之间发生滑移,克服断层面滑动摩擦所需消耗的能量约为2.10×1013 J;岩体在重力方向上产生位移,克服重力做功所消耗的能量约为1.14×1013 J。由此可推断:在一定区域内,应力触发释放能量值与克服断层面滑动摩擦和克服重力做功所消耗的能量之和大致相当;应变能可能会在某一区域范围内集中释放,形成地震效应。本次应力增量触发断层周围岩体能量释放事件中,在映秀—北川断裂与灌县—安县断裂之间的局部区域集中释放的能量为7.67×1012 J,相当于一次MS5.39地震发生所释放的能量。

English

    1. 邓起东,陈社发,赵小麟. 1994. 龙门山及其邻区的构造和地震活动及动力学[J]. 地震地质,16(4):389–403.

    2. Deng Q D,Chen S F,Zhao X L. 1994. Tectonics,seismicity and dynamics of Longmenshan mountains and its adjacent regions[J]. Seismology and Geology,16(4):389–403 (in Chinese).

    3. 付碧宏,时丕龙,张之武. 2008. 四川汶川MS8.0大地震地表破裂带的遥感影像解析[J]. 地质学报,82(12):1679–1687. doi: 10.3321/j.issn:0001-5717.2008.12.005

    4. Fu B H,Shi P L,Zhang Z W. 2008. Spatial characteristics of the surface rupture produced by the MS8.0 Wenchuan earthquake using high-resolution remote sensing imagery[J]. Acta Geologica Sinica,82(12):1679–1687 (in Chinese).

    5. 傅征样, 刘桂萍. 1999. 海原大地震可能触发古浪大地震的力学机制[C]//中国地震学会成立20周年纪念文集. 北京: 中国地震学会: 234−243.

    6. Fu Z X, Liu G P. 1999. The mechanism of great Gulang earthquake triggered probably by the great Haiyuan earthquake[C]//Proceedings of the 20th Anniversary Collection of the Chinese Seismological Society. Beijing: Seismological Press: 234−243 (in Chinese).

    7. 赖锡安,许菊生,卓力格图,刘经南,施闯,姜卫平. 2000. 中国大陆主要构造块体现今运动的基本特征[J]. 中国地震,16(3):213–222. doi: 10.3969/j.issn.1001-4683.2000.03.003

    8. Lai X A,Xu J S,Zhuoli G T,Liu J N,Shi C,Jiang W P. 2000. The fundamental characteristics of principal tectonic blocks present movement in Chinese mainland[J]. Earthquake Research in China,16(3):213–222 (in Chinese).

    9. 刘成利,郑勇,葛粲,熊熊,许厚泽. 2013. 2013年芦山7.0级地震的动态破裂过程[J]. 中国科学:地球科学,43(6):1020–1026.

    10. Liu C L,Zheng Y,Ge C,Xiong X,Xu H Z. 2013. Rupture process of the MS7.0 Lushan earthquake,2013[J]. Science China Earth Sciences,56(7):1187–1192. doi: 10.1007/s11430-013-4639-9

    11. 屈勇,朱航. 2017. 巴颜喀拉块体东—南边界强震序列库仑应力触发过程[J]. 地震研究,40(2):216–225. doi: 10.3969/j.issn.1000-0666.2017.02.007

    12. Qu Y,Zhu H. 2017. Coulomb stress triggering process of major earthquake sequence in the eastern and southern boundaries of the Bayan Har block[J]. Journal of Seismological Research,40(2):216–225 (in Chinese).

    13. 沈明荣, 陈建峰. 2006. 岩体力学[M]. 上海: 同济大学出版社: 52−54.

    14. Shen M R, Chen J F. 2006. Rock Mass Mechanics[M]. Shanghai: Tongji University Press: 52−54 (in Chinese).

    15. 师皓宇,马念杰. 2018. 龙门山断裂带及附近区域地貌形成与地应力演化机制研究[J]. 地震学报,40(3):332–340.

    16. Shi H Y,Ma N J. 2018. Geomorphic formation and crustal stress evolution mechanism in the Longmenshan fault zone and its adjacent regions[J]. Acta Seismologica Sinica,40(3):332–340 (in Chinese).

    17. 师皓宇,马念杰,马骥. 2018. 龙门山断裂带形成过程及其地应力状态模拟[J]. 地球物理学报,61(5):1817–1823. doi: 10.6038/cjg2018L0386

    18. Shi H Y,Ma N J,Ma J. 2018. Numerical simulation for the formation process of the Longmenshan fault zone and its crustal stress state[J]. Chinese Journal of Geophysics,61(5):1817–1823 (in Chinese).

    19. 陶玮,胡才博,万永革,沈正康,王康. 2011. 铲形逆冲断层地震破裂动力学模型及其在汶川地震研究中的启示[J]. 地球物理学报,54(5):1260–1269. doi: 10.3969/j.issn.0001-5733.2011.05.015

    20. Tao W,Hu C B,Wan Y G,Shen Z K,Wang K. 2011. Dynamic modeling of thrust earthquake on listric fault and its inference to study of Wenchuan earthquake[J]. Chinese Journal of Geophysics,54(5):1260–1269 (in Chinese).

    21. 万永革,吴忠良,周公威,黄静,秦立新. 2002. 地震应力触发研究[J]. 地震学报,24(5):533–551. doi: 10.3321/j.issn:0253-3782.2002.05.011

    22. Wan Y G,Wu Z L,Zhou G W,Huang J,Qin L X. 2002. Research on seismic stress triggering[J]. Acta Seismologica Sinica,24(5):533–551 (in Chinese).

    23. 王连捷,崔军文,周春景,孙东生,王薇,唐哲民,钱华山. 2009. 汶川5·12地震发震机理的数值模拟[J]. 地质力学学报,15(2):105–113. doi: 10.3969/j.issn.1006-6616.2009.02.001

    24. Wang L J,Cui J W,Zhou C J,Sun D S,Wang W,Tang Z M,Qian H S. 2009. Numerical modeling for Wenchuan earthquake mechanism[J]. Journal of Geomechanics,15(2):105–113 (in Chinese).

    25. 王卫民,赵连锋,李娟,姚振兴. 2008. 四川汶川8.0级地震震源过程[J]. 地球物理学报,51(5):1403–1410. doi: 10.3321/j.issn:0001-5733.2008.05.013

    26. Wang W M,Zhao L F,Li J,Yao Z X. 2008. Rupture process of the MS8.0 Wenchuan earthquake of Sichuan,China[J]. Chinese Journal of Geophysics,51(5):1403–1410 (in Chinese).

    27. 温韬,唐辉明,刘佑荣,王康,杨呈刚. 2016. 不同围压下板岩三轴压缩过程能量及损伤分析[J]. 煤田地质与勘探,44(3):80–86. doi: 10.3969/j.issn.1001-1986.2016.03.015

    28. Wen T,Tang H M,Liu Y R,Wang K,Yang C G. 2016. Energy and damage analysis of slate during triaxial compression under different confining pressures[J]. Coal Geology &Exploration,44(3):80–86 (in Chinese).

    29. 谢和平,鞠杨,黎立云. 2005a. 基于能量耗散与释放原理的岩石强度与整体破坏准则[J]. 岩石力学与工程学报,24(17):3003–3010. doi: 10.3321/j.issn:1000-6915.2005.17.001

    30. Xie H P,Ju Y,Li L Y. 2005a. Criteria for strength and structural failure of rocks based on energy dissipation and energy release principles[J]. Chinese Journal of Rock Mechanics and Engineering,24(17):3003–3010 (in Chinese).

    31. 谢和平,彭瑞东,鞠杨,周宏伟. 2005b. 岩石破坏的能量分析初探[J]. 岩石力学与工程学报,24(15):2603–2608. doi: 10.3321/j.issn:1000-6915.2005.15.001

    32. Xie H P,Peng R D,Ju Y,Zhou H W. 2005b. On energy analysis of rock failure[J]. Chinese Journal of Rock Mechanics and Engineering,24(15):2603–2608 (in Chinese).

    33. 熊魂,付小敏,王从颜,宾婷婷,沈忠,黄兴建. 2015. 砂岩在不同围压条件下变形特征的试验研究[J]. 中国测试,43(3):113–116. doi: 10.11857/j.issn.1674-5124.2015.03.026

    34. Xiong H,Fu X M,Wang C Y,Bin T T,Shen Z,Huang X J. 2015. Experimental study of sandstone under different confining pressure deformation characteristics[J]. China Measurement &Testing,43(3):113–116 (in Chinese).

    35. 许才军,汪建军,熊维. 2018. 地震应力触发回顾与展望[J]. 武汉大学学报(信息科学版),43(12):2085–2092.

    36. Xu C J,Wang J J,Xiong W. 2018. Retrospection and perspective for earthquake stress triggering[J]. Geomatics and Information Science of Wuhan University,43(12):2085–2092 (in Chinese).

    37. 许国安,牛双建,靖洪文,杨圣奇,王文龙. 2011. 砂岩加卸载条件下能耗特征试验研究[J]. 岩土力学,32(12):3611–3617. doi: 10.3969/j.issn.1000-7598.2011.12.013

    38. Xu G A,Niu S J,Jing H W,Yang S Q,Wang W L. 2011. Experimental study of energy features of sandstone under loading and unloading[J]. Rock and Soil Mechanics,32(12):3611–3617 (in Chinese).

    39. 徐锡伟,闻学泽,郑荣章,马文涛,宋方敏,于贵华. 2003. 川滇地区活动块体最新构造变动样式及其动力来源[J]. 中国科学:D辑,33(增刊1):151–162.

    40. Xu X W,Wen X Z,Zheng R Z,Ma W T,Song F M,Yu G H. 2003. Pattern of latest tectonic motion and its dynamics for active blocks in Sichuan-Yunnan region,China[J]. Science in China:Series D,46(S2):210–226.

    41. 徐芝纶. 1980. 弹性力学简明教程[M]. 北京: 人民教育出版社: 93−95.

    42. Xu Z L. 1980. Brief Course of Elastic Mechanics Theory[M]. Beijing: People’s Education Press: 93−95 (in Chinese).

    43. 颜照坤,李勇,赵国华,周荣军,李敬波,张威,郑立龙,李奋生,闫亮. 2014. 从龙门山地质地貌分段性探讨芦山地震与汶川地震的关系[J]. 自然杂志,36(1):51–58.

    44. Yan Z K,Li Y,Zhao G H,Zhou R J,Li J B,Zhang W,Zheng L L,Li F S,Yan L. 2014. The relationship between Lushan earthquake and Wenchuan earthquake by segmentation of geology and geomorphology of Longmen Shan[J]. Chinese Journal of Nature,36(1):51–58 (in Chinese).

    45. 张国民,田勤俭,王辉. 2003. 可可西里—东昆仑活动构造带强震活动研究[J]. 地学前缘,10(1):39–46. doi: 10.3321/j.issn:1005-2321.2003.01.005

    46. Zhang G M,Tian Q J,Wang H. 2003. Strong earthquake activities in Kekexili-East Kunlun mountains active fault zone,Northwest China[J]. Earth Science Frontiers,10(1):39–46 (in Chinese).

    47. 张培震,邓起东,张国民,马瑾,甘卫军,闵伟,毛凤英,王琪. 2003. 中国大陆的强震活动与活动地块[J]. 中国科学:D辑,33(增刊1):12–20.

    48. Zhang P Z,Deng Q D,Zhang G M,Ma J,Gan W J,Min W,Mao F Y,Wang Q. 2003. Active tectonic blocks and strong earthquakes in the continent of China[J]. Science in China:Series D,46(S2):13–24.

    49. 赵由佳,张国宏,单新建,尹昊,屈春燕. 2018a. 考虑地形起伏和障碍体破裂的汶川地震强地面运动数值模拟[J]. 地球物理学报,61(5):1853–1862. doi: 10.6038/cjg2018M0228

    50. Zhao Y J,Zhang G H,Shan X J,Yin H,Qu C Y. 2018a. Numerical simulation of the strong ground motion of the 2008 Wenchuan earthquake incorporated with topography and barrier rupture model[J]. Chinese Journal of Geophysics,61(5):1853–1862 (in Chinese).

    51. 赵由佳,张国宏,张迎峰,单新建,屈春燕. 2018b. 基于连续-离散单元法的汶川地震动力学二维自发破裂全周期模拟研究[J]. 地震地质,40(1):12–26. doi: 10.3969/j.issn.0253-4967.2018.01.002

    52. Zhao Y J,Zhang G H,Zhang Y F,Shan X J,Qu C Y. 2018b. Two-dimensional whole cycle simulation of spontaneous rupture of the 2008 Wenchuan earthquake using the continuous-discrete element method[J]. Seismology and Geology,40(1):12–26 (in Chinese).

    53. 朱守彪,张培震. 2009. 2008年汶川MS8.0地震发生过程的动力学机制研究[J]. 地球物理学报,52(2):418–427.

    54. Zhu S B,Zhang P Z. 2009. A study on the dynamical mechanisms of the Wenchuan MS8.0 earthquake,2008[J]. Chinese Journal of Geophysics,52(2):418–427 (in Chinese).

    55. 朱维申,李术才,程峰. 2001. 能量耗散模型在大型地下洞群施工顺序优化分析中的应用[J]. 岩土工程学报,23(3):333–336. doi: 10.3321/j.issn:1000-4548.2001.03.016

    56. Zhu W S,Li S C,Cheng F. 2001. Application of energy dissipation model to optimization of construction order for large underground caverns[J]. Chinese Journal of Geotechnical Engineering,23(3):333–336 (in Chinese).

    57. Bridgman P W. 1945. Polymorphic transitions and geological phenomena[J]. Am J Sci,243(2):90–97.

    58. Dahlen F A. 1977. The balance of energy in earthquake faulting[J]. Geophys J R astr Soc,48(2):239–261. doi: 10.1111/j.1365-246X.1977.tb01298.x

    59. Gudmundsson A. 2014. Elastic energy release in great earthquakes and eruptions[J]. Front Earth Sci,2:10.

    60. Harris R A. 1998. Introduction to special section:Stress triggers,stress shadows,and implications for seismic hazard[J]. J Geophys Res,103(B10):24347–24358.

    61. Kilb D,Gomberg J,Bodin P. 2000. Triggering of earthquake aftershocks by dynamic stresses[J]. Nature,408(6812):570–574. doi: 10.1038/35046046

    62. Meade B J. 2007. Present-day kinematics at the India-Asia collision zone[J]. Geology,35(1):81–84. doi: 10.1130/G22924A.1

    63. Reid H F. 1910. Mechanics of the Earthquake, the California Earthquake of April 18, 1906[R]. Washington DC: Carnegie Institution of Washington: 192.

    64. Scholz C H. 2002. The Mechanics of Earthquakes and Faulting[M]. 2nd ed. Cambridge: Cambridge University Press: 504.

    65. Stein R S,Barka A A,Dieterich J H. 1997. Progressive failure on the North Anatolian fault since 1939 by earthquake stress triggering[J]. Geophys J Int,128(3):594–604. doi: 10.1111/gji.1997.128.issue-3

    66. Velasco A A,Hernandez S,Parsons T,Pankow K. 2008. Global ubiquity of dynamic earthquake triggering[J]. Nat Geosci,1(6):375–379. doi: 10.1038/ngeo204

    67. Wan Y G,Shen Z K,Burgmann R,Sun J B,Wang M. 2017. Fault geometry and slip distribution of the 2008 MW7.9 Wenchuan,China earthquake,inferred from GPS and InSAR measurements[J]. Geophys J Int,208(2):748–766. doi: 10.1093/gji/ggw421

    68. Wang Q,Qiao X J,Lan Q G,Freymueller J,Yang S M,Xu C J,Yang Y L,You X Z,Tan K,Chen G. 2011. Rupture of deep faults in the 2008 Wenchuan earthquake and uplift of the Longmen Shan[J]. Nat Geosci,4(9):634–640. doi: 10.1038/ngeo1210

    1. [1]

      师皓宇马念杰 , 2018: 龙门山断裂带及附近区域地貌形成与地应力演化机制研究, 地震学报, 40, 332-340. doi: 10.11939/jass.20170173

    2. [2]

      连尉平李丽唐方头胡彬李晓璇 , 2014: 基于龙门山断裂带中段平行逆断层格局 和动力学背景的特征地震数值模拟实验, 地震学报, 36, 1010-1021. doi: 10.3969/j.issn.0253-3782.2014.06.003

    3. [3]

      丰成君陈群策谭成轩吴满路秦向辉廖椿庭 , 2013: 汶川MS8.0地震对龙门山断裂带附近 地应力环境影响初探——以北川、 江油地区为例, 地震学报, 35, 137-150. doi: 10.3969/j.issn.0253-3782.2013.02.001

    4. [4]

      刘培玄李小军赵纪生 , 2019: 基于断裂两侧应变能积累的地震危险性参数估计—以1679年三河—平谷M8.0地震为例, 地震学报, 41, 259-268. doi: 10.11939/jass.20180110

    5. [5]

      张之立 , 1994: 断裂之间的相互作用和应力场计算, 地震学报, 16, 32-40.

    6. [6]

      李佳欣洪启宇郑需要 , 2017: 龙门山断裂带中段深地震宽角反射/折射剖面研究, 地震学报, 39, 188-206. doi: 10.11939/jass.2017.02.003

    7. [7]

      任俊杰1)张世民1) 马保起1) 田勤俭2) , 2009: 龙门山断裂带中北段大震复发特征与复发间隔估计, 地震学报, 31, 160-171.

    8. [8]

      许昭永文丽敏石宝文许峻樊俊屹李正媛苏有锦 , 2015: 川滇菱形地块的应变能积累释放周期和强震预测, 地震学报, 37, 774-786. doi: 10.11939/jass.2015.05.006

    9. [9]

      许昭永1,3) 胡毅力2) 许 峻1) 张建国1) , 2010: 应变能积累在地震安全性评价中的应用探讨, 地震学报, 32, 77-87.

    10. [10]

      杜建军陈群策安其美王玉芳孟文李国岐 , 2013: 陕西汉中盆地水压致裂地应力测量分析研究, 地震学报, 34, 799-808. doi: 10.3969/j.issn.0253.3782.2013.06.003

    11. [11]

      罗全波陈学良高孟潭李铁飞 , 2019: 台湾双冬断层近场脉冲型地震动的数值模拟, 地震学报, 41, 377-390. doi: 10.11939/jass.20180103

    12. [12]

      张丽芬姚运生 , 2013: 震源动力学破裂过程数值模拟研究, 地震学报, 35, 604-615. doi: 10.3969/j.issn.0253-3782.2013.04.014

    13. [13]

      刘耀炜1,2) 高安泰3) 施 锦3,4) 苏鹤军3,4) , 2007: 天水地区地壳结构热分布与热应力特征初步研究, 地震学报, 29, 605-617.

    14. [14]

      石富强邵辉成张国强方炜 , 2014: 偶极接地线对地电阻率影响的数值模拟, 地震学报, 36, 1101-1112. doi: 10.3969/j.issn.0253-3782.2014.06.011

    15. [15]

      杨兴悦杨立明李玉江谭佩 , 2013: 巴颜喀拉块体强震动力学过程数值模拟, 地震学报, 35, 304-314. doi: 10.3969/j.issn.0253-3782.2013.03.003

    16. [16]

      伍剑波张慧苏鹤军 , 2014: 断层气氡在不同类型覆盖层中 迁移规律的数值模拟, 地震学报, 36, 118-128. doi: 10.3969/j.issn.0253-3782.2014.01.010.

    17. [17]

      齐剑峰赵心怡王成真郝文拯 , 2019: 隐伏正断层错动引发上覆土体破裂过程的三维数值模拟, 地震学报, 41, 124-137. doi: 10.11939/jass.20180027

    18. [18]

      刘 洋 魏修成 , 2003: 双相各向异性介质中弹性波传播有限元方程及数值模拟, 地震学报, 25, 154-162.

    19. [19]

      张晓志1)胡进军1)谢礼立1,2)王海云2) , 2006: 近断层基岩强地面运动影响场的显式有限元数值模拟, 地震学报, 28, 638-644.

    20. [20]

      王 辉1,2) 曹建玲2) 张 怀2) 张国民1) 石耀霖2) 申旭辉1) , 2007: 川滇地区下地壳流动对上地壳运动变形影响的数值模拟, 地震学报, 29, 581-591.

  • 图 1  三向受力状态示意图

    Figure 1.  Schematic diagram of three-dimensional stress state

    图 2  龙门山及附近区域断层分布图

    Figure 2.  Distribution map of faults in Longmenshan and its vicinity

    图 3  数值计算模型图

    Figure 3.  The numerical calculation model

    图 4  能量释放密度图(断裂名称同图3

    Figure 4.  Distribution map of energy release density (The faults are the same as those in Fig.3

    图 5  应力触发前后最大主应力变化分布图

    Figure 5.  Distribution map of maximum principal stress variation before and after stress triggering

    图 6  能量释放全周期变化曲线图

    Figure 6.  Variation of energy release curve in a full cycle

    图 7  岩体垂直位移分布图

    Figure 7.  Distribution of vertical displacement of rock mass

    图 8  克服重力做功能量密度图

    Figure 8.  Energy density map for overcoming gravity

    弹性模量/GPa抗拉强度
    /MPa
    内聚力
    /MPa
    摩擦角
    泊松比密度
    /(103 kg·m−3
    重力加速度
    /(m·s−2
    断层面
    地表底部法向刚度/GPa切向刚度/GPa摩擦角/°
    401061216350.2862 6509.810.510

    表 1  模型岩体物理力学参数

    Table 1.  Physico-mechanical parameters for rock mass of the numerical model

    下载: 导出CSV
  • 加载中
图(8)表(1)
计量
  • PDF下载量:  26
  • 文章访问数:  328
  • HTML全文浏览量:  186
  • 引证文献数: 0
文章相关
  • 通讯作者:  李楠, linan78@ncist.edu.cn
  • 收稿日期:  2018-12-27
  • 录用日期:  2019-03-06
  • 网络出版日期:  2019-07-01
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

/

返回文章
本系统由北京仁和汇智信息技术有限公司设计开发 技术支持: info@rhhz.net 百度统计