zhenbo

ISSN 0253-3782 CN 11-2021/P

汤东活动断裂带气体地球化学特征

胡宁 马志敏 娄露玲 张宝山 王宇 王明亮 王文净 郭德科

引用本文: 胡宁, 马志敏, 娄露玲, 张宝山, 王宇, 王明亮, 王文净, 郭德科. 2019. 汤东活动断裂带气体地球化学特征. 地震学报, 41(4): 524-535. doi: 10.11939/jass.20180131 shu
Citation:  Hu Ning, Ma Zhimin, Lou Luling, Zhang Baoshan, Wang Yu, Wang Mingliang, Wang Wenjing, Guo Deke. 2019. Geochemical characteristics of soil gas in Tangdong active fault zone. Acta Seismologica Sinica41(4): 524-535. doi: 10.11939/jass.20180131 shu

汤东活动断裂带气体地球化学特征

    通讯作者: 张宝山, tuoniao667@163.com
摘要: 本文采用野外多期跨断层流动观测测定了汤东活动断裂带H2,Rn和CO2的分布特征,以此分析了该断裂带的气体地球化学特征及其活动背景,从而揭示了气体地球化学特征与构造之间的联系。分析结果显示:不同测量期次的H2,Rn和CO2浓度存在显著差异,其中张河村测线的各期次测量结果中6月份各组分气体浓度均显著高于其它期次,而邢李庄测线的测量结果中1月份各组分气体浓度均显著高于其它期次;各测量期次的各气体组分分布曲线特征相似,高值异常点的重现性较好。张河村测线多期测量的H2和Rn浓度背景值分别为(8.93±3.92)×10−6和(17.38±4.28) kBq/m3,在测线西部距汤东主断裂135 m和230 m处H2与Rn同步出现高值异常;邢李庄测线H2和Rn的背景值分别为(41.20±16.64)×10−6和(29.00±8.28) kBq/m3,H2与Rn在测线西部距汤东主断裂60 m处同步出现异常。两测线的气体浓度高值异常部位与地球物理、跨断层联合钻孔详勘结果之间存在较好的对应关系,由此可推断观测气体浓度能够敏感地指示断裂带位置,而且H2和Rn浓度是汤东断裂带气体地球化学观测的关键指标。

English

    1. 李营,杜建国,王富宽,周晓成,盘晓东,魏汝庆. 2009. 延怀盆地土壤气体地球化学特征[J]. 地震学报,31(1):82–91. doi: 10.3321/j.issn:0253-3782.2009.01.009

    2. Li Y,Du J G,Wang F K,Zhou X C,Pan X D,Wei R Q. 2009. Geochemical characteristics of soil gas in Yanqing-Huailai basin,North China[J]. Acta Seismologica Sinica,31(1):82–91 (in Chinese).

    3. 李源,马兴全,夏修军,谢恒义,王志铄,赵显刚. 2018. 河南新郑—太康断裂东段土壤气体地球化学特征[J]. 地震,38(3):49–57. doi: 10.3969/j.issn.1000-3274.2018.03.005

    4. Li Y,Ma X Q,Xia X J,Xie H Y,Wang Z S,Zhao X G. 2018. Geochemical characteristics of soil gas in the eastern section of Xinzheng-Taikang fault,Henan[J]. Earthquake,38(3):49–57 (in Chinese).

    5. 刘保金,何宏林,石金虎,冉永康,袁洪克,谭雅丽,左莹,何银娟. 2012. 太行山东缘汤阴地堑地壳结构和活动断裂探测[J]. 地球物理学报,55(10):3266–3276. doi: 10.6038/j.issn.0001-5733.2012.10.009

    6. Liu B J,He H L,Shi J H,Ran Y K,Yuan H K,Tan Y L,Zuo Y,He Y J. 2012. Crustal structure and active faults of the Tangyin graben in the eastern margin of Taihang mountain[J]. Chinese Journal of Geophysics,55(10):3266–3276 (in Chinese).

    7. 刘菁华,王祝文,刘树田,王晓丽. 2006. 城市活动断裂带的土壤氡、汞气评价方法[J]. 吉林大学学报(地球科学版),36(2):295–297.

    8. Liu J H,Wang Z W,Liu S T,Wang X L. 2006. The evaluation method of soil radon and mercury gas measurement about urban active fault zones[J]. Journal of Jilin University (Earth Science Edition),36(2):295–297 (in Chinese).

    9. 刘舒波,唐力君,孙青,岑况. 2012. 汶川地震断裂带科学钻探工程2号孔350—800 m井段的钻探泥浆气体组分变化[J]. 物探与化探,36(1):48–53. doi: 10.11720/wtyht.2012.1.10

    10. Liu S B,Tang L J,Sun Q,Cen K. 2012. Variation of drilling mudgas components at 350−800 m interval of No. 2 borehole of scientific drilling for Wenchuan seismic faulted zone[J]. Geophysical and Geochemical Exploration,36(1):48–53 (in Chinese).

    11. 陶明信,徐永昌,史宝光,蒋忠惕,沈平,李晓斌,孙明良. 2005. 中国不同类型断裂带的地幔脱气与深部地质构造特征[J]. 中国科学:D辑,35(5):441–451.

    12. Tao M X,Xu Y C,Shi B G,Jiang Z T,Shen P,Li X B,Sun M L. 2005. Mantle degassing and deep geological structural features of different types of fault zones in China[J]. Science in China:Series D,35(5):441–451 (in Chinese).

    13. 张慧,苏鹤军,李晨桦. 2013. 合作市隐伏断层控制性地球化学探测场地试验[J]. 地震工程学报,35(3):618–624. doi: 10.3969/j.issn.1000-0844.2013.03.0618

    14. Zhang H,Su H J,Li C H. 2013. Field test on the geochemical detection of concealed fault in Hezuo City[J]. China Earthquake Engineering Journal,35(3):618–624 (in Chinese).

    15. 中国地震局地球物理勘探中心. 2016. 新乡市活断层探测与地震危险性评价[R]. 郑州: 中国地震局地球物理勘探中心: 163−295.

    16. Geophysical Exploration Center, China Earthquake Administration. 2016. Active Fault Detection and Seismic Risk Assessment in Xinxiang City[R]. Zhengzhou: Geophysical Exploration Center, China Earthquake Administration: 163−295 (in Chinese).

    17. 周晓成,王传远,柴炽章,司学芸,雷启云,李营,谢超,刘胜昌. 2011. 海原断裂带东南段土壤气体地球化学特征[J]. 地震地质,33(1):123–132. doi: 10.3969/j.issn.0253-4967.2011.01.012

    18. Zhou X C,Wang C Y,Chai C Z,Si X Y,Lei Q Y,Li Y,Xie C,Liu S C. 2011. The geochemical characteristics of soil gas in the southeastern part of Haiyuan fault[J]. Seismology and Geology,33(1):123–132 (in Chinese).

    19. 周晓成,杜建国,陈志,崔月菊,刘雷. 2012. 地震地球化学研究进展[J]. 矿物岩石地球化学通报,31(4):340–346. doi: 10.3969/j.issn.1007-2802.2012.04.004

    20. Zhou X C,Du J G,Chen Z,Cui Y J,Liu L. 2012. Advance review of seismic geochemistry[J]. Bulletin of Mineralogy,Petrology and Geochemistry,31(4):340–346 (in Chinese).

    21. Barman C,Ghose D,Sinha B,Deb A. 2016. Detection of earthquake induced radon precursors by Hilbert-Huang transform[J]. J Appl Geophys,133:123–131. doi: 10.1016/j.jappgeo.2016.08.004

    22. Baubron J C,Rigo A,Toutain J P. 2002. Soil gas profiles as a tool to characterise active tectonic areas: The Jaut Pass example (Pyrenees,France)[J]. Earth Planet Sci Lett,196(1/2):69–81.

    23. Ciotoli G,Lombardi S,Annunziatellis A. 2007. Geostatistical analysis of soil gas data in a high seismic intermontane basin: Fucino Plain,central Italy[J]. J Geophys Res,112(B5):B05407.

    24. Dubessy J,Pagel M,Beny J M,Christensen H,Hickel B,Kosztolanyi C,Poty B. 1988. Radiolysis evidenced by H2-O2 and H2-bearing fluid inclusions in three uranium deposits[J]. Geochim Cosmochim Acta,52(5):1155–1167. doi: 10.1016/0016-7037(88)90269-4

    25. Eisbrenner G,Evans H J. 1983. Aspects of hydrogen metabolism in nitrogen-fixing legumes and other plant-microbe associa-tions[J]. Annu Rev Plant Physiol,34(1):105–136. doi: 10.1146/annurev.pp.34.060183.000541

    26. Fu C C,Yang T F,Walia V,Chen C H. 2005. Reconnaissance of soil gas composition over the buried fault and fracture zone in southern Taiwan[J]. Geochem J,39(5):427–439. doi: 10.2343/geochemj.39.427

    27. Fu C C,Yang T F,Chen C H,Lee L C,Wu Y M,Liu T K,Walia V,Kumar A,Lai TH. 2017a. Spatial and temporal anomalies of soil gas in northern Taiwan and its tectonic and seismic implications[J]. J Asian Earth Sci,149:64–77. doi: 10.1016/j.jseaes.2017.02.032

    28. Fu C C,Walia V,Yang T F,Lee L C,Liu T K,Chen C H,Kumar A,Lin S J,Lai T H,Wen K L. 2017b. Preseismic anoma-lies in soil-gas radon associated with 2016 M6.6 Meinong earthquake,Southern Taiwan[J]. Terr Atmos Ocean Sci,28(5):787–798. doi: 10.3319/TAO.2017.03.22.01

    29. Fu C C,Yang T F,Du J,Walia V,Chen Y G,Liu T K,Chen C H. 2008. Variations of helium and radon concentrations in soil gases from an active fault zone in southern Taiwan[J]. Radiat Meas,43:S348–S352. doi: 10.1016/j.radmeas.2008.03.035

    30. Ito T,Nagamine K,Yamamoto K,Adachi M,Kawabe I. 1999. Preseismic hydrogen gas anomalies caused by stress-corrosion process preceding earthquakes[J]. Geophys Res Lett,26(13):2009–2012. doi: 10.1029/1999GL900407

    31. Kumar G,Kumari P,Kumar A,Prasher S,Kumar M. 2017. A study of radon and thoron concentration in the soil along the active fault of NW Himalayas in India[J]. Ann Geophys,60(3):S0329.

    32. Li Y,Du J G,Wang X,Zhou X C,Xie C,Cui Y J. 2013. Spatial variations of soil gas geochemistry in the Tangshan area of Northern China[J]. Terr Atmos Ocean Sci,24(3):323–332. doi: 10.3319/TAO.2012.11.26.01(TT)

    33. Lombardi S,Voltattorni N. 2010. Rn,He and CO2 soil gas geochemistry for the study of active and inactive faults[J]. Appl Geochem,25(8):1206–1220. doi: 10.1016/j.apgeochem.2010.05.006

    34. Neri M,Ferrera E,Giammanco S,Currenti G,Cirrincione R,Patanè G,Zanon V. 2016. Soil radon measurements as a potential tracer of tectonic and volcanic activity[J]. Sci Rep,6:24581. doi: 10.1038/srep24581

    35. Peters V,Conrad R. 1996. Sequential reduction processes and initiation of CH4 production upon flooding of oxic upland soils[J]. Soil Biol Biochem,28(3):371–382. doi: 10.1016/0038-0717(95)00146-8

    36. Saruwatari K,Kameda J,Tanaka H. 2004. Generation of hydrogen ions and hydrogen gas in quartz-water crushing experiments:An example of chemical processes in active faults[J]. Phys Chem Miner,31(3):176–182. doi: 10.1007/s00269-004-0382-2

    37. Sciarra A,Mazzini A,Inguaggiato S,Vita F,Lupi M,Hadi S. 2018. Radon and carbon gas anomalies along the Watukosek fault system and Lusi mud eruption,Indonesia[J]. Mar Petrol Geol,90:77–90. doi: 10.1016/j.marpetgeo.2017.09.031

    38. Seyfried Jr W E,Foustoukos D I,Fu Q. 2007. Redox evolution and mass transfer during serpentinization: An experimental and theoretical study at 200 ℃,500 bar with implications for ultramafic-hosted hydrothermal systems at Mid-Ocean Ridges[J]. Geochim Cosmochim Acta,71(15):3872–3886. doi: 10.1016/j.gca.2007.05.015

    39. Sugimoto A,Wada E. 1995. Hydrogen isotopic composition of bacterial methane: CO2/H2 reduction and acetate fermentation[J]. Geochim Cosmochim Acta,59(7):1329–1337. doi: 10.1016/0016-7037(95)00047-4

    40. Sugisaki R,Ido M,Takeda H,Isobe Y,Hayashi Y,Nakamura N,Satake H,Mizutani Y. 1983. Origin of hydrogen and carbon dioxide in fault gases and its relation to fault activity[J]. J Geol,91(3):239–258. doi: 10.1086/628769

    41. Sun Y T,Zhou X C,Zheng G D,Li J,Shi H Y,Guo Z F,Du J G. 2017. Carbon monoxide degassing from seismic fault zones in the Basin and Range Province,west of Beijing,China[J]. J of Asian Earth Sci,149:41–48. doi: 10.1016/j.jseaes.2017.07.054

    42. Walia V,Mahajan S,Kumar A,Singh S,Bajwa B S,Dhar S,Yang T F. 2008. Fault delineation study using soil-gas method in the Dharamsala area,NW Himalayas,India[J]. Radiat Meas,43(S1):S337–S342.

    43. Walia V,Yang T F,Hong W L,Lin S J,Fu C C,Wen K L,Chen C H. 2009. Geochemical variation of soil-gas composition for fault trace and earthquake precursory studies along the Hsincheng fault in NW Taiwan[J]. Appl Radiat Isotopes,67(10):1855–1863. doi: 10.1016/j.apradiso.2009.07.004

    44. Weinlich F H,Faber E,Boušková A,Horálek J,Teschner M,Poggenburg J. 2006. Seismically induced variations in MariánskéLázně fault gas composition in the NW Bohemian swarm quake region,Czech Republic:A continuous gas monitoring[J]. Tectonophysics,421(1/2):89–110.

    45. Weinlich F H,Gaždová R,Teschner M,Poggenburg J. 2016. The October 2008 NovýKostel earthquake swarm and its gas geochemical precursor[J]. Geofluids,16(5):826–840. doi: 10.1111/gfl.2016.16.issue-5

    46. Yoshizaki M,Shibuya T,Suzuki K,Shimizu K,Nakamura K,Takai K,Omori S,Maruyama S. 2009. H2 generation by experimental hydrothermal alteration of komatiitic glass at 300 ℃ and 500 bars: A preliminary result from on-going experiment[J]. Geochem J,43(5):e17–e22. doi: 10.2343/geochemj.1.0058

    47. Yuce G,Ugurluoglu D Y,Adar N,Yalcin T,Yaltirak C,Streil T,Oeser V. 2010. Monitoring of earthquake precursors by multi-parameter stations in Eskisehir region (Turkey)[J]. Appl Geochem,25(4):572–579. doi: 10.1016/j.apgeochem.2010.01.013

    48. Yuce G,Fu C C,D′Alessandro W,Gulbay A H,Lai C W,Bellomo S,Yang T F,Italiano F,Walia V. 2017. Geochemical characteristics of soil radon and carbon dioxide within the Dead Sea fault and Karasu fault in the Amik Basin (Hatay),Turkey[J]. Chem Geol,469:129–146. doi: 10.1016/j.chemgeo.2017.01.003

    49. Zhang W B,Du J G,Zhou X C,Wang F. 2016. Mantle volatiles in spring gases in the Basin and Range Province on the west of Beijing,China:Constraints from helium and carbon isotopes[J]. J Volcanol Geoth Res,309:45–52. doi: 10.1016/j.jvolgeores.2015.10.024

    50. Zhou H L,Su H J,Zhang H,Li C H. 2017. Correlations between soil gas and seismic activity in the generalized Haiyuan fault zone,north-central China[J]. Nat Hazards,85(2):763–776. doi: 10.1007/s11069-016-2603-7

    1. [1]

      张磊刘耀炜包创郭丽爽 , 2019: 安宁河断裂带土壤汞的分布特征, 地震学报, 41, 249-258. doi: 10.11939/jass.20180141

    2. [2]

      李春峰1)贺群禄2)赵国光2) , 2005: 东昆仑活动断裂带东段古地震活动特征, 地震学报, 27, 60-67.

    3. [3]

      李海峰马学东李明涛梁志荣黄生金 , 2014: 香山北缘活动断裂带东段构造特征及活动性分析, 地震学报, 36, 306-317. doi: 10.3969/j.issn.0253-3782.2014.02.015

    4. [4]

      张世民 谢富仁 , 2001: 鲜水河-小江断裂带7级以上强震构造区的划分及其构造地貌特征, 地震学报, 23, 36-44.

    5. [5]

      江在森1)牛安福2)王 敏1)黎凯武1)方 颖1)张 希3)张晓亮3) , 2005: 活动断裂带构造变形定量分析, 地震学报, 27, 610-619.

    6. [6]

      赵国敏, 高长波, 丑景俊, 李振英 , 1993: 丹东地区基底构造与鸭绿江断裂带, 地震学报, 15, 282-288.

    7. [7]

      张致伟1,2) 程万正2) 阮祥2) 吴朋2) , 2009: 汶川8.0级地震前龙门山断裂带的地震活动性和构造应力场特征, 地震学报, 31, 117-127.

    8. [8]

      闻学泽1, C. R. Allen2, 罗灼礼1, 钱洪1, 周华伟2, 黄伟师3 , 1989: 鲜水河全新世断裂带的分段性、几何特征及其地震构造意义., 地震学报, 11, 362-372.

    9. [9]

      杨景春1, 林伟凡2, 蒋铭2, 李格平2 , 1981: 北京八宝山断裂带近期构造活动及其和地震的关系 , 地震学报, 3, 390-398.

    10. [10]

      袁道阳1) 刘百篪1) 张培震2) 刘小凤1) 才树华1) 刘小龙1) , 2002: 兰州庄浪河断裂带的新构造变形与地震活动, 地震学报, 24, 441-444.

    11. [11]

      艾依飞张健 , 2019: 鲜水河断裂带南北构造差异性的地球物理分析, 地震学报, 41, 329-342. doi: 10.11939/jass.20180109

    12. [12]

      徐叶邦 , 1991: 活动断裂带中地震分布时空结构的信息维 D1sub>特征初探, 地震学报, 13, 372-379.

    13. [13]

      冉洪流 , 2004: 海原断裂带M6.7地震概率及其震级分布, 地震学报, 26, 609-615.

    14. [14]

      赵静武艳强江在森牛安福刘杰王丽凤魏文薪 , 2013: 芦山地震前龙门山断裂带闭锁程度 与变形动态特征研究, 地震学报, 35, 681-691. doi: 10.3969/j.issn.0253-3782.2013.05.007

    15. [15]

      任俊杰1)张世民1) 马保起1) 田勤俭2) , 2009: 龙门山断裂带中北段大震复发特征与复发间隔估计, 地震学报, 31, 160-171.

    16. [16]

      何宏林1)池田安隆2) , 2007: 安宁河断裂带晚第四纪运动特征及模式的讨论, 地震学报, 29, 537-548.

    17. [17]

      杨攀新 陈正位 任金卫张 俊 , 2011: 西藏中部格仁错断裂带活动特征及分段研究, 地震学报, 33, 362-372.

    18. [18]

      史兰斌1)林传勇1)陈孝德1)张小鸥1)柏美祥2) , 1997: 新疆二台断裂带断层岩及古震源体特征, 地震学报, 19, 291-298.

    19. [19]

      唐兰兰孔祥艳龙锋冯建刚 , 2013: 柯坪塔格断裂带重复地震识别及其时空特征分析, 地震学报, 35, 328-340. doi: 10.3969/j.issn.0253-3782.2013.03.005

    20. [20]

      谢富仁李宏 , 1995: 利用断层滑动资料确定鲜水河断裂带现代构造应力的方向和大小., 地震学报, 17, 164-171.

  • 图 1  研究区区域构造及测线位置

    Figure 1.  Regional geology structure and location of observation lines for the target fault

    图 2  张河村测线H2 (a,b),Rn (c,d)和CO2 (e,f)浓度的分布特征

    Figure 2.  Distribution characteristics of soil H2 (a,b),Rn (c,d) and CO2 (e,f)concentrations on Zhanghecun measurement line

    图 3  邢李庄测线H2 (a,b),Rn (c,d)和CO2 (e,f)分布特征

    Figure 3.  Distribution characteristics of soil H2 (a,b),Rn (c,d) and CO2 (e,f)concentrations on Xinglizhuang meansurement line

    图 4  2018年1月(a)和6月(b)汤东断裂Rn浓度与CO2浓度的相关性

    Figure 4.  The relationships between Rn and CO2 concentration in Tangdong active fault zone

    测线指标时间测点数最大值最小值平均值中值下四
    分位
    上四
    分位
    四分位
    间距
    标准差峰背比背景值


    H2/10−610月3423.701.076.295.002.3810.678.295.254.398.93
    1月3244.422.788.476.024.368.143.788.326.75
    6月30110.401.5821.4713.655.6126.1020.4925.858.02
    Rn/(kBq·m−310月3438.148.5618.2017.5614.0821.477.396.662.2517.38
    1月3237.359.7617.5417.0113.4519.816.365.722.21
    6月3046.704.6419.6817.5213.6325.0511.428.892.58
    CO21月170.54%0.15%0.29%0.22%0.19%0.40%0.21%0.12 %1.99
    6月165.00%0.73%2.00%1.47%0.92%3.13%2.21%1.34%2.78


    H2/10−610月3382.1911.4137.6234.8322.7649.0926.3317.772.3541.20
    1月30185.310.658.7044.4819.7177.1757.4647.573.98
    6月3087.790.2734.8130.9416.2644.2628.0124.732.82
    Rn/(kBq·m−3)10月3362.6010.1128.3924.9119.6936.7217.0412.672.3829.00
    1月3062.2114.035.2933.9324.0845.2821.2012.481.81
    6月3059.967.5224.5822.0112.6933.3520.6614.022.71
    CO21月160.78%0.16%0.38%0.36%0.19%0.50%0.31%0.20%2.22
    6月142.00%0.52%1.09%0.98%0.63%1.53%0.91%0.51%2.04

    表 1  汤东活动断裂带土壤气H2,Rn和CO2浓度分布特征

    Table 1.  Statistics on characteristics of soil H2,Rn and CO2 concentrations on Tangdong active fault zone

    下载: 导出CSV
  • 加载中
图(6)表(1)
计量
  • PDF下载量:  13
  • 文章访问数:  169
  • HTML全文浏览量:  77
  • 引证文献数: 0
文章相关
  • 通讯作者:  张宝山, tuoniao667@163.com
  • 收稿日期:  2019-01-09
  • 录用日期:  2019-03-29
  • 网络出版日期:  2019-07-01
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

/

返回文章
本系统由北京仁和汇智信息技术有限公司设计开发 技术支持: info@rhhz.net 百度统计