zhenbo

ISSN 0253-3782 CN 11-2021/P

走滑断层对洋中脊热结构与流动场的影响规律及对太平洋南部边界RRF型三联点的解释

王振山 魏东平 徐佳静 王少坡

引用本文: 王振山, 魏东平, 徐佳静, 王少坡. 2019. 走滑断层对洋中脊热结构与流动场的影响规律及对太平洋南部边界RRF型三联点的解释. 地震学报, 41(4): 459-471. doi: 10.11939/jass.20180009 shu
Citation:  Wang Zhenshan, Wei Dongping, Xu Jiajing, Wang Shaopo. 2019. Effects of the strike-slip fault on the thermal structure and mantle flow of the mid-ocean ridge and the interpretation to RRF triple junctions at the southern Pacific boundary. Acta Seismologica Sinica41(4): 459-471. doi: 10.11939/jass.20180009 shu

走滑断层对洋中脊热结构与流动场的影响规律及对太平洋南部边界RRF型三联点的解释

    通讯作者: 魏东平, dongping@ucas.ac.cn
摘要: 选取太平洋板块南部边界的板块相对运动速度不同的两个洋脊-洋脊-转换断层(RRF)型三联点,即麦夸里(Macquarie)三联点和南太平洋三联点,为研究对象,通过数值模拟的方法,研究该类型三联点走滑断层边界两侧的板块相对运动速度对三联点附近地区地幔流动场和温度结构的影响。模拟结果表明:太平洋南部边界RRF三联点走滑断层边界两侧的板块相对运动速度控制着三联点附近的温度分布和地幔流动;随着走滑断层边界两侧板块相对运动速度的增加,转换断层相对滑动速度增加,温度上升,距洋脊边界100 km范围内的地幔流体速度变大;麦夸里三联点和南太平洋三联点处3个板块的相对运动,使得三联点的转换断层边界浅部产生剪应力集中,导致震源深度集中在15—25 km;同时相对运动产生的地幔流动引起温度结构变化,该变化控制着地形变化。

English

    1. Amante C, Eakins B W. 2009. ETOPO1 1 Arc-minute global relief model: Procedures, data sources and analysis[DB/OL]. NOAA Technical Memorandum NESDIS NGDC-24. Boulder, Colorado: National Geophysical Data Center, NOAA. doi: 10.7289/V5C8276M.

    2. Anderson-Fontana S,Larson R L,Engeiln J F,Lundgren P,Larson R L,Stein S. 1986. Tectonics and evolution of the Juan Fernandez microplate at the Pacific-Nazca-Antarctic triple junction[J]. J Geophys Res,91(B2):2005–2018. doi: 10.1029/JB091iB02p02005

    3. Behn M D,Boettcher M S,Hirth G. 2007. Thermal structure of oceanic transform faults[J]. Geology,35(4):307–310. doi: 10.1130/G23112A.1

    4. Bergman E A,Solomon S C. 1988. Transform fault earthquakes in the North Atlantic:Source mechanisms and depth of faulting[J]. J Geophys Res,93(B8):9027–9057. doi: 10.1029/JB093iB08p09027

    5. Bourgois J,Michaud F. 2002. Comparison between the Chile and Mexico triple junction areas substantiates slab window development beneath northwestern Mexico during the past 12−10 Myr[J]. Earth Planet Sc Lett,201(1):35–44. doi: 10.1016/S0012-821X(02)00653-2

    6. Boutonnet E,Arnaud N,Guivel C,Lagabrielle Y,Scalabrino B,Espinoza F. 2010. Subduction of the South Chile active spreading ridge:A 17 Ma to 3 Ma magmatic record in central Patagonia (western edge of Meseta del Lago Buenos Aires,Argentina)[J]. J Volcanol Geoth Res,189(3/4):319–339.

    7. Conway C E,Bostock H C,Baker J A,Wysoczanski R J,Verdier A L. 2012. Evolution of Macquarie Ridge Complex seamounts:Implications for volcanic and tectonic process at the Australia-Pacific plate boundary south of New Zealand[J]. Mar Geo,295/296/297/298:34–50. doi: 10.1016/j.margeo.2011.11.009

    8. Dordevic M,Georgen J. 2016. Dynamics of plume–triple junction interaction:Results from a series of three-dimensional numerical models and implications for the formation of oceanic plateaus[J]. J Geophys Res,121(3):1316–1342.

    9. Dziewonski A M,Chou T. –A,Woodhouse J H. 1981. Determination of earthquake source parameters from waveform data for studies of global and regional seismicity[J]. J Geophys Res,86(B4):2825–2852. doi: 10.1029/JB086iB04p02825

    10. Ekström G,Nettles M,Dziewońnski A M. 2012. The global CMT project 2004−2010:Centroid-moment tensors for 13,017 earthquakes[J]. Phys Earth Planet Inter,200/201:1–9. doi: 10.1016/j.pepi.2012.04.002

    11. Georgen J E,Lin J. 2002. Three-dimensional passive flow and temperature structure beneath oceanic ridge–ridge–ridge triple junctions[J]. Earth Planet Sc Lett,204(1/2):115–132.

    12. Georgen J E. 2008. Mantle flow and melting beneath oceanic ridge–ridge–ridge triple junctions[J]. Earth Planet Sc Lett,270(3/4):231–240.

    13. Georgen J E,Sankar R D. 2010. Effects of ridge geometry on mantle dynamics in an oceanic triple junction region:Implications for the Azores Plateau[J]. Earth Planet Sc Lett,298(1/2):23–34.

    14. Gregg P M,Behn M D,Lin J,Grove T L. 2009. Melt generation,crystallization,and extraction beneath segmented oceanic transform faults[J]. J Geophys Res,114(B11):1–16.

    15. Ito G T,Lin J. 1995. Mantle temperature anomalies along the paresent and paleoaxes of the Galapagos spreading center as inferred from gravity analyses[J]. J Geophys Res,100(B3):3733–3745. doi: 10.1029/94JB02594

    16. Larson R L,Searle R C,Kleinrock M C,Schouten H,Bird R T,Naar D F,Rusby R I,Hooft E E,Lasthiotakis H. 1992. Roller-bearing tectonic evolution of the Juan Fernandez microplate[J]. Nature,356(6370):571–5765. doi: 10.1038/356571a0

    17. Liu K J,Levander A,Zhai Y B,Porritt R W,Allen R M. 2012. Asthenospheric flow and lithospheric evolution near the Mendocino triple junction[J]. Earth Planet Sc Lett,323/324:60–71. doi: 10.1016/j.jpgl.2012.01.020

    18. Lowrie W. 2007. Fundamentals of Geophysics[M]. 2nd ed. Cambridge: Cambridge University Press: 1−381.

    19. Mckenzie D P,Morgan W J. 1969. Evolution of triple junctions[J]. Nature,224(5215):125–133. doi: 10.1038/224125a0

    20. Morell K D. 2016. Seamount,ridge,and transform subduction in southern Central America[J]. Tectonics,35(2):357–385. doi: 10.1002/tect.v35.2

    21. Roland E,Behn M D,Hirth G. 2010. Thermal-mechanical behavior of oceanic transform faults:Implications for the spatial distribution of seismicity[J]. Geochem Geophy Geosy,11(7):Q070011–15.

    22. Smith D K,Schouten H,Montési L,Zhu W L. 2013. The recent history of the Galapagos triple junction preserved on the Pacific plate[J]. Earth Planet Sc Lett,371/372:6–15. doi: 10.1016/j.jpgl.2013.04.018

    23. Stein C A,Stein S. 1992. A model for the global variation in oceanic depth and heat flow with lithospheric age[J]. Nature,359(6391):123–129. doi: 10.1038/359123a0

    24. Turcotte D, Schubert G. 2002. Geodynamics[M]. 3rd ed. New York: Cambridge University Press: 1−626.

    25. van Keken P E,Currie C,King S D,Behn M D,Cagnioncle A,He J H,Katz R F,Lin S C,Parmentier E M,Spiegelman M,Wang K L. 2008. A community benchmark for subduction zone modeling[J]. Phys Earth Planet Inter,171(1/4):187–197.

    26. Wakabayashi J. 2004. Tectonic mechanisms associated with P-T paths of regional metamorphism:Alternatives to single-cycle thrusting and heating[J]. Tectonophysics,392(1/4):193–218.

    1. [1]

      吴子泉1)王成虎2)谭捍东3)冯 锐4)程久龙5) , 2006: 利用对称四极横向剖面法探测走滑断层的应用, 地震学报, 28, 70-75.

    2. [2]

      罗全波陈学良高孟潭李铁飞 , 2019: 台湾双冬断层近场脉冲型地震动的数值模拟, 地震学报, 41, 377-390. doi: 10.11939/jass.20180103

    3. [3]

      齐剑峰赵心怡王成真郝文拯 , 2019: 隐伏正断层错动引发上覆土体破裂过程的三维数值模拟, 地震学报, 41, 124-137. doi: 10.11939/jass.20180027

    4. [4]

      伍剑波张慧苏鹤军 , 2014: 断层气氡在不同类型覆盖层中 迁移规律的数值模拟, 地震学报, 36, 118-128. doi: 10.3969/j.issn.0253-3782.2014.01.010.

    5. [5]

      张晓志1)胡进军1)谢礼立1,2)王海云2) , 2006: 近断层基岩强地面运动影响场的显式有限元数值模拟, 地震学报, 28, 638-644.

    6. [6]

      潘善德, 马瑾 , 1992: 走滑断层地震复发时间间隔, 地震学报, 14, 187-194.

    7. [7]

      丁海平1,2)刘启方2)金 星2)袁一凡2) , 2004: 基岩地震动的一个相干函数模型-走滑断层情形h, 地震学报, 26, 62-67.

    8. [8]

      张晨张双喜 , 2014: 基于随温度变化的热系数模拟板块俯冲动力学过程, 地震学报, 36, 872-882. doi: 10.3969/j.issn.0253-3782.2014.05.011

    9. [9]

      师皓宇马念杰石建军李楠马骥 , 2019: 应力增量触发断层岩体能量释放模拟与地震成因探讨—以龙门山断裂带为例, 地震学报, 41, 502-511. doi: 10.11939/jass.20180151

    10. [10]

      张丽芬姚运生 , 2013: 震源动力学破裂过程数值模拟研究, 地震学报, 35, 604-615. doi: 10.3969/j.issn.0253-3782.2013.04.014

    11. [11]

      刘耀炜1,2) 高安泰3) 施 锦3,4) 苏鹤军3,4) , 2007: 天水地区地壳结构热分布与热应力特征初步研究, 地震学报, 29, 605-617.

    12. [12]

      谢志南1) 廖振鹏1,2) , 2008: 人工边界高频振荡失稳机理的一点注记, 地震学报, 30, 302-306.

    13. [13]

      石富强邵辉成张国强方炜 , 2014: 偶极接地线对地电阻率影响的数值模拟, 地震学报, 36, 1101-1112. doi: 10.3969/j.issn.0253-3782.2014.06.011

    14. [14]

      杨兴悦杨立明李玉江谭佩 , 2013: 巴颜喀拉块体强震动力学过程数值模拟, 地震学报, 35, 304-314. doi: 10.3969/j.issn.0253-3782.2013.03.003

    15. [15]

      刘 洋 魏修成 , 2003: 双相各向异性介质中弹性波传播有限元方程及数值模拟, 地震学报, 25, 154-162.

    16. [16]

      王 辉1,2) 曹建玲2) 张 怀2) 张国民1) 石耀霖2) 申旭辉1) , 2007: 川滇地区下地壳流动对上地壳运动变形影响的数值模拟, 地震学报, 29, 581-591.

    17. [17]

      张瑞青1)魏富胜1)乔成斌2)林邦慧1) , 2005: 用(DDA+FEM)方法数值模拟1975年海城、1999年岫岩地震发生的过程l, 地震学报, 27, 163-170.

    18. [18]

      丁海平1,2) 刘启方2) , 2010: 震源参数对强地面震动模拟结果的影响, 地震学报, 32, 51-59.

    19. [19]

      蔡永恩 赵志栋 , 2008: 利用流固耦合模型模拟地震和海啸全过程, 地震学报, 30, 594-604.

    20. [20]

      李宗超高孟潭陈学良吴清 , 2019: 2016年熊本MJ7.3地震的工程地震动参数模拟及分布特征分析, 地震学报, 41, 100-110. doi: 10.11939/jass.20180070

  • 图 1  三联点分布图

    Figure 1.  The distribution map of triple junctions

    图 2  RRF型三联点模型示意图

    Figure 2.  The schematic diagram of the RRF triple junction model

    图 3  模型1的温度结构

    Figure 3.  The temperature structure of model one

    图 4  模拟温度与计算所得30 km深处的温度对比图

    Figure 4.  Comparison of simulation temperature with calculation temperature at 30 km depth

    图 5  模型1—9的温度对比图

    Figure 5.  The temperature contrast diagram of model 1−9

    图 6  模型1垂向地幔流体速度场

    Figure 6.  The vertical velocity of model one

    图 7  模型1—9在45 km深处的垂向地幔流体速度对比图

    Figure 7.  The vertical mantle flow velocity comparison of model 1−9 at the depth of 45 km

    图 8  转换断层地形对比图

    Figure 8.  The contrast map of topography for the transform faults

    图 9  转换断层等温线剖面图及其对应的剪应力分布

    Figure 9.  The isothermal profile of the transform fault and its corresponding shear stress distribution

    ρ0/(kg·m−3α/K−1η0/(Pa·s)ηmax/(Pa·s)μk/[W·(m·K)−1]
    3 3003×10−51×10191×10230.63
    CP/[J·(kg·K)−1]T0/℃Tm/℃C0/MPaR/[J·(mol·K)−1]E/(kJ·mol−1
    1 20001 300108.314 4260

    表 1  模型参数(Behn et al,2007Georgen,2008

    Table 1.  Reference parameters of the model (Behn et al,2007Georgen,2008

    下载: 导出CSV
    模型R1/(cm·a−1R2/(cm·a−1F/(cm·a−1模型R1/(cm·a−1R2/(cm·a−1F/(cm·a−1
    136366126
    239676159
    331298242
    4315129583
    5693
      注:R1R2F分别为代表模型中慢速扩张洋脊、快速扩张洋脊和转换断层。

    表 2  模型板块相对运动速度

    Table 2.  The relative velocities of plates in the models

    下载: 导出CSV
  • 加载中
图(10)表(2)
计量
  • PDF下载量:  15
  • 文章访问数:  685
  • HTML全文浏览量:  197
  • 引证文献数: 0
文章相关
  • 通讯作者:  魏东平, dongping@ucas.ac.cn
  • 收稿日期:  2018-03-08
  • 录用日期:  2019-03-22
  • 网络出版日期:  2019-07-01
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

/

返回文章
本系统由北京仁和汇智信息技术有限公司设计开发 技术支持: info@rhhz.net 百度统计